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A nonlinear model of heat conduction 

H Pascal 
Department of Physics, University of Alberta, Edmonton, Albena, Canada T6G ZJI 

Abstract. A nonlinear model of heat propagation is presented, from which a new heat 
conduction equation is derived. An exact similarity solution in closed form of this equation 
is obtained, which reveals the travelling wave characteristics for the transient temperature 
distribution. It is shown that the temperature disturbances propagate with finite velocity, 
which is a monotonically decreasing function of time. 

1. Introduction 

It is well known that the standard heat conduction equation implies that a temperature 
disturbance will propagate with infinite velocity. According to the relativity theory this 
result is unacceptable becsuse no disturbances can travel faster than light. From a 
continuum mechanics point of view no disturbances in a medium are likely to propagate 
faster than sound. Consequently, the heat conduction equation 

_- a2T a2 - aT = pc 
a x 2 -  at A 

fails to describe accurately the heat transfer mechanism over small times; the standard 
linear equation (1) belongs to a class known as parabolic equations. 

In order to eliminate the paradox of infinite velocity of the temperature distuhance 
propagation, Cattaneo (1958) has proposed instead of equation (1) a linear hyperbolic 
equation 

J’T 1 a2T D c a T  +- -. 
a X 2 - c 2  a t2  A at 

This equation is known as the telegraph equation, in which C 2  = A / T ~ c  is the propaga- 
tion velocity of temperature disturbances. When C = 00, equation (2) reduces to 
equation (1). The analytical solutions to the equation (2) have been presented and 
discussed by Gembarovic and Mayeriuk (1987, 1988) with respect to the propagation 
of heat pulses. 

The derivation of equation (2) requires a modified Fourier’s law including a thermal 
inertial term .rJJ/dT associated with the thermal relaxation effect. As a result, the 
equivalent system of equations corresponding to (2) will be 

JJ aT 
- = - p c d r  ax 

and 

J J  dT 
at ax 

T - + J + A - =  0 

(3 )  

(4) 
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where J is the heat flux, p the density, c the specific heat, A the thermal conductivity 
and T the relaxation time. When T = 0, equation (4) is Fourier's law 

( 5 )  

A great number of publications on the validity of equations (1) and (2) are reported 
in the fiterzpGre, 1: is =.;:side ;he 
related to this subject. However, we refer the reader to two excellent review papers by 
Joseph and Preziosi (1989, 1990) in which the basic aspects related to heat transport 
by waves are discussed and interpreted. We also refer the reader to a paper by Israel 
(1987) where the difficulties associated with the traditional theories of heat transfer 
are analysed. 

For the case of harmonic temperature oscillations we have J = J (x)  elY' and T = 
T(x) elw', so that in the frequency domain equation (4) leads to 

=f :his papzi io wvizw a:: ihe liiibfiiaiioiis 

d 7  
I =  - A * ( o )  - 

dx 

which represents the generalized Fourier's law, where A*(w) is expressed by the complex 
quantity 

A* = A ( l  + ion - ' .  (7) 

The relations (6) and (7) reveal that in a regime of temperature oscillations the heat 
flux is not in phase with the temperature gradient. 

As reported in the literature, the violation of equation ( 5 )  has been observed in 
the propagation of thermal waves, where the thermal conductivity is a power law 
function of temperature expressed as in Zeldovich and Raizer (1967): 

where A,, is the thermal conductivity corresponding to a temperature reference To. 
Note that (8) appears in a real explosion, in which the hot gas is radiating into the 
ambiant, for example the blast waves in gas dynamics. 

Another relevant example of the violation of Fourier's law ( 5 )  is the heat transfer 
in superfluid helium, in which case a nonlinear relation between the heat flux and 
temperature gradient was found as in the form 

This power law relation is known as the Gorter-Melling law. In addition, we mention 
the case of heat transfer in  plasma physics where Fourier's law ( 5 )  is no longer valid. 

From the considerations shown above? it is evident that there is no justified physical 
reason why A in the heat equation (1) should not depend on the temperature, nor why 
the heat flux J in ( 5 )  should not depend on a nonlinear derivative of temperature. 
Therefore, the heat equation (1) is indeed only an approximation which, however, was 
found to govern many physical applications. 
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To evaluate the nonlinear effects associated with violation of equation ( l ) ,  shown 
above, we write the system of equations (3) and (4) in the form 

aJ a7 
ax at  - = - p c -  

and 

The case without the relaxation effect, i.e. T = O  in ( l ) ,  leads to nonlinear Fourier's 
law expressed in the form 

It is anticipated that the nonlinear heat model, given by the constitutive equation (12) 
where three fitting parameters, i.e. A,, m and n, are involved, could provide a better 
agreement between the observed and predicted data for a larger class of heat transfer 
problems. 

From equations (iOj and ( i i j  we obtain, by cross-diiierenriarion, rhe Foiiowing 
nonlinear equation of hyperbolic type for determining the transient temperature distri- 
bution: 

where 

For the case m = 0 and n = 1 equation (2) is recovered, while for m # 0, n = 1 and 
C = cc we have from (13) 

This nonlinear diffusion equation was obtained and studied in the paper by Zeldovich 
and Kompaneets (1959). An exact self-similar solution of equation (15) for the Cauchy 
problem, given by Zeldovich and Kompaneets (1959), reveals the existence of travelling 
wave characteristics. We note that this solution is an instantaneous point source solution 
from which the released heat diffuses in a medium of infinite extent. An equation 
similar to (15 )  for the pressure distribution also appears in the polytropic gas flow 
through a porous medium. 

In this paper we are concerned with finding an exact similarity solution to the 
nonlinear equation 

which is derived from (13) without the thermal relaxation effect, i.e. C =a in (13). 
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2. Similarity solutions 

To illustrate the nonlinear effects associated with heat equation (16), we investigate 
here the case of semi-infinite medium, where J T / J x  < 0, m # 0 and n # 0. 

The similarity solutions of equation (16) may be obtained by means of the relations 

q = xt-p and T =  t P f ( q ) .  (17) 
Substituting these relations into (16) we tind thatf ( q )  satisfies the nonlinear differential 
equation 

provided that between a and p we have the following relation: 

1 
l + n  

p =- [ l + ( l -  m - n ) n ] .  (19) 

The case a = p in (18) leads to 

and from (19) one has 

The first integral of (20) will be 

C being an integration constant. 
The case a = 0 in (18) leads to 

where 

(24) 
1 

l + n  
p =-. 

Unfortunately this case is no more integrable in closed form than equation (20), 
but it is important to emphasize that the nonlinear diffusion equation (16) has been 
reduced to an ordinary differential equation in a similarity variable. Equation (23) can 
be solved numerically. 

Considering C = O  in (22), thenf (q)  is determined from (22) by relation 

where C is also an integration constant. This relation reveals that a moving temperature 
front exists provided that m + n > 1 ,  in which case (25) may be rewritten in terms of 
a new constant q ,  in the form 

I 'I 1 (26) f ( q )  = B [ q l ' l + " " " -  ( I+n) /n  " r ( m i n - 1 )  
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From previous relations, it can be seen that for m + n < 1 a temperature front does not 
exist. 

The relations (17) and (26) determine the temperature distribution behind the 
moving front, which is expressed as 

'I 1 O<'I<<11,. (28) 

(29) 

T =  B1-'/(2"+m)[,,',l+")/" - ( I + " ) / "  n/(m+n-l l  

At 7 = O  we have 
T ( 0 )  = B ' I y + " l / ( m + ~ - l l  -1/(2n+ml 

T ( ? )  

1 

so that (28) may be rewi!!e" i" dime"sin"!e.s fer= 
( I t n l l n  " / ( m + " - , !  

-=[I-(:) T(O) 1 o < T < 9 1  (30) 

and T ( q ) = O f o r v a q , .  

obtained from (25) by means of the relation 
The temperature distribution corresponding to the case m + n = 1 may be easily 

Since m f n = i ,  then 7 = xt-'/('+"I , so that from (17)  and (31) we have 

For n = 1 the fundamental solution of the linear diffusion equation is recovered: 

When n = 1 and m > 1, Zeldovich's solution is recovered from (28) and expressed as 

for 0 < q < q1 and T = 0 for q a q,, while from (28) the case m = 0 and n > 1 leads to 

for 0 < q < q, and T = 0 for q 
be determined in the next section. 

q,. In the above equations v l  is a constant which will 

3. The Cauchy problem 

We consider the problem when the heat is released instantaneously from a point source 
located at x = 0, known as the Cauchy problem. Obviously, from a physical point of 
view, this problem is appropriate to analyse the nonlinear effects associated with the 
propagation of temperature waves. For example, the temperature distribution (28) has 
a blow-up behaviour. 
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It is well known that the Cauchy problem, i.e. the solution of an instantaneous 
point source, requires laT/axl,=,=O; I( 1 )  is the location of the moving temperature 
front. From (28) it can be seen that this condition is satisfied. Thus a solution of 
equation (16) is sought to satisfy the initial condition 

pc lom T(x ,  0) dx = Q =constant (36) T(x, 0 )  = OSb) or 

and those at the front location x =  I ( f ) .  

T ( x P I ( f ) ,  t ) = O  and (37) 

where S(x) is the Dirac function and Q =constant the total amount of heat released 
instantaneously at x=O. It should be pointed out that according to (30) the front 
~0nrli!lonr7T!~xI,~:;,;=I)dnegno!ho!difm~ l.Therefore,theconditionaT!ax!;=!::,= 
0 requires m < 1 and m + n > 1. The case m > 1 and n # 1 leads to aT/axl,=,,,, = Co. 
Despite this fact, however, relations (12), (28) and (30) give a zero heat flux at the 
front location, i.e. J ( l ( f ) ,  t) = 0. Figure 1 shows the temperature profiles corresponding 
to the case m < 1 and n = 1. 

By integrating (3) over the spatial range 0 < x < I( f) we obtain 

J ( f ( f ) , f ) - J ( O ,  f ) = - p ~  Tdx-T( l ( t ) ,  t ) -  df  

which taking into account the conditions (37) becomes 

J ( 0 ,  t )  = pc- T dx. 
i t  lo1i'! 

Since the amount of heat Q may be expressed in terms of heat flux by relation 
d Q  = J ( 0 ,  t)  df 

t 

0.8 

h e 
%: r 
+ 
\ 0.6 

0.4 

0.2 

c 

(39) 

Figure 1. Effect of fitting parameter m c 1 on the dimensionless temperature distribution 
for " = I .  
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then we have instead of (36) 

Q = pc T dx. 

In  terms of similarity variable 7 the relation (41) is expressed as 

(41) 

Since Q =constant then from (42) we have 

(43) 
where r is the gamma function. 

from (17) and (24) 
The relation (43) determines 7, =constant. As a result, the front location is obtained 

- \ . I  / I t > =  ,,'/(2"+,") , I .  (44) 

whereas the propagation velocity of temperature disturbances will be 

Since m + n > 1, then the front movement is decelerated. For illustrative purposes, we 
show in figures 2 and 3 the solution behaviour of Cauchy's problem for the dimension- 
less temperature distribution, given by relation (30), expressed in terms of 717, .  Figure 
2 reveals the effects of the fitting parameter m for n = 1, while figure 3 reveals the 

"= 2.0 

"= 2.5 

n= 3.0 

-_. 
. . . . . . . . . . . , 
----_ 

T h ,  

Figure 2. Effects of fitting parameter n > 1 on the dimensionless temperature distribution 
f o r m = l .  
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m=1.0 
m=2.0 

\ m-3.0 
0.21 "4.0 

m.5.0 - -. - -. - 

" I  I 1 I \1 I - 
0 0.2 0.4 0.6 0.8 1.0 1.2 

V h ,  

Figure 3. Effects of fitting parameter m 2 1 on the dimensionless temperature distribution 
forn=O. 

effects of n for m 3 1.  From these figures it is evident that m and n have a significant 
effect on the travelling wave solution of the nonlinear diffusion equation (16), which 
is a degenerate parabolic equation. 

4. Concluding remarks 

In this paper we have shown an exact similarity solution in closed form to the nonlinear 
heat conduction (16) governing the propagation of heat waves. 

The solution behaviour, determining the transient temperature response, indicates 
the existence of travelling wave characteristics. As a result, the temperature disturbances 
wiii propagate with finite veiocity, which From (45) is a monotonicaiiy decreasing 
function of time. This relevant result is in contrast to the standard linear equation ( l ) ,  
where the temperature disturbances travel with infinite velocity. Consequently, instead 
of an ill-defined domain of temperature variation, obtained from the linear equation 
( l ) ,  we have from (16) a perfectly defined domain which expands in time according 
to the relation (44). The considerations shown above point out the main differences 
between the behaviours of the solutions determined by equations ( 1 )  and (16). On the 
other hand, the parameters m and n determine the shape of the temperature profile, 
as can be seen from figures 1-3. 

Appendix 

It is of special interest to illustrate the effects associated with the presence of a source 
term in equation (16). For this purpose, equation ( 3 )  must be written as 

- JJ = -pc (F+ Q). 
ax 
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Assuming the linear relation Q = bT, where for b > 0 we have a sink effect while for 
b < 0 a source effect. As a result, equations (12) and ( A . l )  lead to the nonlinear diffusion 
equation 

a ax [ T" 121 '1 = -a2( $+ b T ) .  

By means of the function 

T=e-b'f 

the equation (A.2) is reduced to 

where 

). 
1 ( 1  - e - (m+n- l )hr  

T =  
( m  + n - 1 ) b  

(A.3) 

A similarity solution to (A.4) may be obtained by using the relations 

f =  T-OP(9) and 9 = XT-'. ( A 4  

Taking into account that JT/ax  < 0, then these relations yield the following differential 
equation for ~ ( 7 ) :  

provided that 

p ( l + n )  = 1 + a ( l  - m  - n ) .  (A.&) 

~~ It is ~. straightforward .. to show that for the case 01 = /3 in (A.8)  an analytical solution to 
(A.7) is expressed as 

where from (A.8) we obtain 

(A.lO) 
1 a = p = -  

2 n + m '  

Consequently, the relation (A.9) is a travelling wave solution for m + n >  1 .  In this 
case, the previous relations (A.3), (A.6) and (A.9) yield the temperature distribution, 
in the presence of a sink effect, as follows: 

I 9 ) ( A . l l )  ~ = ~ ~ - b z ~ - ~ ( , , ( l + n I l n -  ( I t n l l n  n / ( m + n - l l  

for 9 5 q ,  and T=O for 7 b q,, where U is given by relation (A.10), T by relation 
(AS) and p by relation (A.lO). In the absence of a sink effect, i.e. b = O  in (A.11). we 
recover the temperature distribution (28). 
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To determine v l  in (A.11) for the Cauchy problem, we have (41) which, taking 
into account (A.ll), becomes 

This relation shows that Q is no longer a constant as in the case b = O .  This means 
that a similarity solution to the nonlinear equation (A.2) for the Cauchy problem will 
require a heat source in which Q has to decline in time according to the relation 
Q = Qo e-b'. In this case, the relation (A.12) gives ql  =constant. Based on this fact, 
the location of the temperature front is determined from (A.5) and (A.6) and expressed 
as 

while the propagation rate of temperature disturbances will be 

(A.14) 

In view of relation (A.131, it turns out that there exists a front location I* from which 
the temperature front cannot expand and, consequently, the temperature disturbances 
cannot be felt for / > I * .  Forexample,consideringexp(-(m+n-1)bt)-0.01 in(A.13) 
then from (A.13) one has 

11 
[(m + n - l)b]'/2n+m 

I* = (A.15) 

which is a direct consequence of the sink effect, i.e. b > 0. This relevant result is in 
contrast to the case b=O in (A.131, where r ( t )  approaches infinity when f+m. 
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